"); //-->
操纵杆工作原理
操纵杆为我们表演了一个非常巧妙的戏法,它将纯粹的物理动作(手部的运动)完完全全地转换成数学形式(一连串0和1所组成的计算机语言)。优秀的操纵杆可以完美地实现这种转换,让您丝毫察觉不出其中的奥妙。当您真正投入到游戏中时,您会觉得自己完全置身于虚拟世界中。
在本文中,您将会了解到一些常见的操纵杆是如何在设计上实现这种转换的。正如您下文中将会看到的,从最初的游戏控制台设计到现有的复杂的“作用力反馈”模型,操纵杆技术已经向前迈进了一大步。
操纵杆的基本原理是将塑料杆的运动转换成计算机能够处理的电子信息。操纵杆已在各种机械设备上得到应用,包括F-15 喷气式战斗机、挖掘机和轮椅。本文将重点介绍计算机操纵杆,不过,其他类型的操纵杆运作的基本原理与此相同。
不同操纵杆技术的差别主要体现在它们所传送的信息的多少。许多早期游戏控制台中的最简单的操纵杆只不过是一个特殊的电子开关。
这种基本的设计包括一个安放在带有弹性橡胶外壳的塑料底座上的操纵杆。在底座中操纵杆正下方位置装有一块电路板。电路板由一些“印刷线路”组成,并且这些线路连接到几个接触触点。然后,从这些触点引出普通电线连接到计算机。
印刷线路构成了一个简单的电路(该电路由一些更小的电路构成)。这些线路仅仅将电流从一个触点传送到另一个触点。当操纵杆处于中间位置时,也就是当您还未将操纵杆推向任何一边时,除了一个电路之外的所有其他电路均处于断开状态。由于每条线路中的导体材料并没有完全连接,因此电路中没有电流通过。
每个断开部分的上方覆盖着一个带有小金属圆片的简单塑料按钮。当您朝任一方向移动操纵杆时,操纵杆便会向下挤压其中的一个按钮,使导电的金属圆片接触到电路板。如此一来,就可以闭合电路,完成两个线路部分的连接。电路闭合之后,电流就会从计算机(或游戏控制台)沿着一条线路流过,穿过印刷线路,通过另外一条线路返回计算机(或游戏控制台)。
当计算机检测到特定线路上的电流后,便会了解操纵杆当前所处的位置需要接通相关的电路。向前推操纵杆将会闭合“前进开关”,而向左推则会闭合“左移开关”,依次类推。在某些设计中,计算机还能在操纵杆闭合两个开关时识别出对角线位置(例如,同时闭合前进开关和左移开关意味着向左前方的对角线运动)。开火按钮的原理完全一样:当您按下按钮时,意味着将闭合一个电路,计算机也就可以识别出开火命令。
这种设计以类似速记的方式传送操纵杆的运动,它以绝对值而非细微变化的形式来处理运动。换句话说,它并不能区分向前轻推操作杆的动作和将操作杆向前一直推到头的动作,对它来说两者传送的都仅仅是一个表示向前进的数值。
对某些游戏而言,这种思路是好的,甚至是无可挑剔的。例如,对Pac Man或Tetris而言,这种设计已经很完美了。但对于其他游戏,如模拟飞行而言,这种设计存在相当大的局限性。在下一节中,我们将了解到能够检测到细微位移的传统模拟操纵杆设计
为了向计算机传递完整的运动过程,操纵杆需要测量其在两个轴上的位置:X轴(从左到右)和Y轴(自上到下)。与在基础几何学中一样,X-Y坐标系精确地标明了操纵杆所在的位置。
在标准的操纵杆设计中,游戏手柄移动一个安装在两根可旋转开槽轴中的窄棒。前后扳动操纵杆将使Y方向轴从一侧转动到另一侧。左右扳动操纵杆将使X方向轴转动。沿对角线移动操纵杆时,则会使两个轴同时转动。当您松开操纵杆时,几个弹簧会将操纵杆弹回中央位置。
操纵杆控制系统仅需监视每一个轴的位置就能确定操纵杆的位置。传统的模拟操纵杆通过两个分压器或可变电阻来达到上述目的。下图显示了一个典型的布局。
每个分压器由一个卷曲导轨形式的电阻和一个可移动的触臂组成。计算机电源的电流从输入端开始,通过卷曲的电阻和触臂,流回计算机的操纵杆端口。
沿着导轨移动触臂,可以增大或减小作用于流经此电路的电流的电阻值。如果触臂位于与分压器输入连接端相对的另一端,电流将流经整个长度的电阻,因而电流遇到的电阻最大。如果触臂靠近输入端,则分压器的电阻最小。
每个分压器连接到操纵杆的一个轴,因此转动轴将会移动触臂。也就是说,如果将操纵杆向前推动到头,则会将分压器触臂移动到导轨的一端,如果向胸前回拉操纵杆,则将触臂向另一方向移动。
改变分压器的电阻值可以改变接入分压器的电路中的电流。通过这种方式,分压器先将操纵杆的物理位移转换成电信号,再将信号传递到计算机上的操纵杆端口。
此电信号完全是模拟信号,是一种包含信息的变化的波形,就像无线电信号一样。为了利用这种信息,计算机需要将其转换成数字信息,即精确的数值。
在传统的系统中,计算机内部的卡(印刷线路板)通过使用非常粗糙的模数转换器完成这个任务。其基本思路是利用每个分压器引起的电压变化为电容充电,电容是一个简单的储存电荷的电子元件(有关更多信息,请参见电容器工作原理)。调节分压器使电阻值越大,电容充电的时间越长;分压器电阻值越小,电容充电速度越快。
先将电容放电然后再计算电容充电所需的时间,通过这个方式转换器以此确定分压器的位置,从而确定操纵杆的位置。测量到的充电速率是计算机可以识别的数值。当计算机需要读取操纵杆位置时,便会执行此操作。
将分压器连接到旋转的部件,可以将这种系统应用到各种控制系统中。例如,传统的方向盘的工作原理即是如此,通过方向盘直接转动分压器触臂。一些操纵杆还使用一个对应于Z轴的分压器,Z轴由操纵杆自身的转动来带动。
一些操纵杆还带有一个“大高帽”(操纵杆顶部的一个用拇指操控的微型控制器)。这种小型操纵杆使用了与上一节中介绍的简易操纵杆相同的开关系统。
传统的模拟系统总体上可以很好地工作,但确实存在一些限制。在下一节中,我们将探讨模拟系统的主要弊端并了解一些最新的解决方案。
*博客内容为网友个人发布,仅代表博主个人观点,如有侵权请联系工作人员删除。